Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia.

نویسندگان

  • Maarten A Lijkwan
  • Alwine A Hellingman
  • Ernst J Bos
  • Koen E A van der Bogt
  • Mei Huang
  • Nigel G Kooreman
  • Margreet R de Vries
  • Hendrika A B Peters
  • Robert C Robbins
  • Jaap F Hamming
  • Paul H A Quax
  • Joseph C Wu
چکیده

In this study, we target the hypoxia inducible factor-1 alpha (HIF-1-alpha) pathway by short hairpin RNA interference therapy targeting prolyl hydroxylase-2 (shPHD2). We use the minicircle (MC) vector technology as an alternative for conventional nonviral plasmid (PL) vectors in order to improve neovascularization after unilateral hindlimb ischemia in a murine model. Gene expression and transfection efficiency of MC and PL, both in vitro and in vivo, were assessed using bioluminescence imaging (BLI) and firefly luciferase (Luc) reporter gene. C57Bl6 mice underwent unilateral electrocoagulation of the femoral artery and gastrocnemic muscle injection with MC-shPHD2, PL-shPHD2, or phosphate-buffered saline (PBS) as control. Blood flow recovery was monitored using laser Doppler perfusion imaging, and collaterals were visualized by immunohistochemistry and angiography. MC-Luc showed a 4.6-fold higher in vitro BLI signal compared with PL-Luc. BLI signals in vivo were 4.3×10(5)±3.3×10(5) (MC-Luc) versus 0.4×10(5)±0.3×10(5) (PL-Luc) at day 28 (p=0.016). Compared with PL-shPHD2 or PBS, MC-shPHD2 significantly improved blood flow recovery, up to 50% from day 3 until day 14 after ischemia induction. MC-shPHD2 significantly increased collateral density and capillary density, as monitored by alpha-smooth muscle actin expression and CD31(+) expression, respectively. Angiography data confirmed the histological findings. Significant downregulation of PHD2 mRNA levels by MC-shPHD2 was confirmed by quantitative polymerase chain reaction. Finally, Western blot analysis confirmed significantly higher levels of HIF-1-alpha protein by MC-shPHD2, compared with PL-shPHD2 and PBS. This study provides initial evidence of a new potential therapeutic approach for peripheral artery disease. The combination of HIF-1-alpha pathway targeting by shPHD2 with the robust nonviral MC plasmid improved postischemic neovascularization, making this approach a promising potential treatment option for critical limb ischemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization.

BACKGROUND The hypoxia-inducible transcription factor (HIF) subunits are destabilized via the O(2)-dependent prolyl hydroxylase domain proteins (PHD1, PHD2, and PHD3). We investigated whether inhibition of PHDs via upregulating HIF might promote postischemic neovascularization. METHODS AND RESULTS Mice with right femoral artery ligation were treated, by in vivo electrotransfer, with plasmids ...

متن کامل

Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs

The transcription factor hypoxia-inducible factor 1-alpha (HIF-1α) is responsible for the downstream expression of over 60 genes that regulate cell survival and metabolism in hypoxic conditions as well as those that enhance angiogenesis to alleviate hypoxia. However, under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylase 2, and subsequently degraded, with a biological half-life...

متن کامل

Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction.

BACKGROUND Under normoxic conditions, hypoxia-inducible factor (HIF)-1α is rapidly degraded by 2 hydroxylases: prolyl hydroxylase (PHD) and factor-inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its upregulation may be an effective therapeutic option for ischemic heart failure. METHODS AND RESULTS PHD and FIH were cloned from mouse embryonic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human gene therapy

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2014